Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1282754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444851

RESUMO

Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.


Assuntos
Dengue , Vacinas , Viroses , Humanos , Vacinologia , Vacinação , Dengue/prevenção & controle
2.
NPJ Aging ; 9(1): 21, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620330

RESUMO

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ß peptide, ß catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.

4.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906052

RESUMO

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Autoanticorpos , Autoimunidade , Receptores Acoplados a Proteínas G/metabolismo
5.
Sci Transl Med ; 15(683): eade6023, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791210

RESUMO

The emergence of the SARS-CoV-2 Omicron sublineages resulted in increased transmission rates and reduced protection from vaccines. To counteract these effects, multiple booster strategies were used in different countries, although data comparing their efficiency in improving protective immunity remain sparse, especially among vulnerable populations, including older adults. The inactivated CoronaVac vaccine was among the most widely distributed vaccine worldwide and was essential in the early control of SARS-CoV-2-related hospitalizations and deaths. However, it is not well understood whether homologous versus heterologous booster doses in those fully vaccinated with CoronaVac induce distinct humoral responses or whether these responses vary across age groups. We analyzed plasma antibody responses from CoronaVac-vaccinated younger or older individuals who received a homologous CoronaVac or heterologous BNT162b2 or ChAdOx1 booster vaccine. All three evaluated boosters resulted in increased virus-specific IgG titers 28 days after the booster dose. However, we found that both IgG titers against SARS-CoV-2 Spike or RBD and neutralization titers against Omicron sublineages were substantially reduced in participants who received homologous CoronaVac compared with the heterologous BNT162b2 or ChAdOx1 booster. This effect was specifically prominent in recipients >50 years of age. In this group, the CoronaVac booster induced low virus-specific IgG titers and failed to elevate neutralization titers against any Omicron sublineage. Our results point to the notable inefficiency of CoronaVac immunization and boosting in mounting protective antiviral humoral immunity, particularly among older adults, during the Omicron wave. These observations also point to benefits of heterologous regimens in high-risk populations fully vaccinated with CoronaVac.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Idoso , Vacina BNT162 , SARS-CoV-2 , Imunoglobulina G , Anticorpos Antivirais
6.
J Med Virol ; 95(2): e28450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597912

RESUMO

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Matadoras Naturais , Ciclo Celular
7.
Heliyon ; 8(11): e11368, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36349284

RESUMO

Brazil experienced one of the most prolonged periods of school closures, and reopening could have exposed students to high rates of SARS-CoV-2 infection. However, the infection status of students and school workers at the time of the reopening of schools located in Brazilian cities is unknown. Here we evaluated viral carriage by RT-PCR and seroprevalence of anti-SARS-CoV-2 antibodies (IgM and IgG) by immunochromatography in 2259 individuals (1139 students and 1120 school workers) from 28 schools in 28 Brazilian cities. We collected the samples within 30 days after public schools reopened and before the start of vaccination campaigns. Most students (n = 421) and school workers (n = 446) had active (qRT-PCR + IgM- IgG- or qRT-PCR + IgM + IgG-/+) SARS-CoV-2 infection. Regression analysis indicated a strong association between the infection status of students and school workers. Furthermore, while 45% (n = 515) of the students and 37% (n = 415) of the school workers were neither antigen nor antibody positive in laboratory tests, 16% of the participants (169 students and 193 school workers) were oligosymptomatic, including those reinfected. These individuals presented mild symptoms such as headache, sore throat, and cough. Notably, most of the individuals were asymptomatic (83.9%). These results indicate that many SARS-CoV-2 infections in Brazilian cities during school reopening were asymptomatic. Thus, our study highlights the need to promote a coordinated public health effort to guarantee a safe educational environment while avoiding exacerbating pre-existent social inequalities in Brazil, reducing social, mental, and economic losses for students, school workers, and their families.

8.
Front Immunol ; 13: 981532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238301

RESUMO

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Autoanticorpos , Humanos
9.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269470

RESUMO

Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Assuntos
COVID-19 , Linfo-Histiocitose Hemofagocítica , Inteligência Artificial , COVID-19/complicações , COVID-19/genética , Criança , Humanos , Linfo-Histiocitose Hemofagocítica/complicações , Ativação de Neutrófilo , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica
10.
Nat Commun ; 13(1): 1220, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264564

RESUMO

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Receptores Acoplados a Proteínas G/imunologia , Sistema Renina-Angiotensina/imunologia , Autoanticorpos/sangue , Autoimunidade , Biomarcadores/sangue , COVID-19/sangue , COVID-19/classificação , Estudos Transversais , Feminino , Humanos , Aprendizado de Máquina , Masculino , Análise Multivariada , Receptor Tipo 1 de Angiotensina/imunologia , Receptores CXCR3/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença
11.
Sci Rep ; 11(1): 20281, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645905

RESUMO

Fungal infections represent a major global health problem affecting over a billion people that kills more than 1.5 million annually. In this study, we employed an integrative approach to reveal the landscape of the human immune responses to Candida spp. through meta-analysis of microarray, bulk, and single-cell RNA sequencing (scRNA-seq) data for the blood transcriptome. We identified across these different studies a consistent interconnected network interplay of signaling molecules involved in both Toll-like receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune responses. scRNA-seq data confirmed that genes commonly identified by the three transcriptomic methods show cell type-specific expression patterns in various innate and adaptive immune cells. These findings shed new light on the anti-Candida immune response, providing putative molecular pathways for therapeutic intervention.


Assuntos
Candida albicans/imunologia , Candida glabrata/imunologia , Candida parapsilosis/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Transdução de Sinais/imunologia , Antivirais/farmacologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Imunidade , Imunidade Inata , Interferons/metabolismo , RNA-Seq , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...